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ABSTRACT. We consider the spectral problem for the class of polynomial operator pen-
cils, defined recursively by P,()\) = a,(A — AB) — \?ap_1C, ag = a; = 1, Gnsy =
ap —Aan_1.n=1,2...., where A. B and C are symmetrizable (in general, unbounded
and nonsymmetric) operators in a separable complex Hilbert space H. A method for
generating two-sided bounds for the eigenvalues of P()) is developed and sufficient con-
ditions for the convergence of the method are obtained. The theory is illustrated with a
numerical example.

1. INTRODUCTION

Spectral problems for polynomial operator pencils of the form Ly = Ag—AA;—...—\"A4,,.
where A is the spectral parameter and Ay, A;, ..., A, are linear operators in a Hilbert or
Banach space, arise in many areas of application (control theory, wave propagation, hy-
drodynamics, elasticity theory)and have been the subject of investigation by a number
of authors, under various conditions cn the operators A,, n > 1 (see, e.g. [1.2]). In [3]
the quadratic eigenvalue problem Lyu = 0, Ly = A — AB — A2C, was studied in the
case when the operators A, B, C are linear, unbounded and, in general, nonsymmetric.
Results concerning the existence and approximation of the eigenvalues were derived un-
der aditional conditions of K-symmetry and K-positivity of the operators A, B, C. In
this paper we extend these results to spectral problems involving polynomial operator
pencils P,(A) and develop a method for generating two-sided improvable bounds for the
eigenvalues.

2. THE SETTING
Let H be a separable complex Hilbert space with the norm
lell = (z,2)'*,  (z€ H) (1)
Let us define the sequence
a=1, a; =1, a3 = a; = Xay,..., LI e, (2)
and consider in H the nonlinear eigenvalue problem
an(Az — ABz) — N’a,_,Cz=0n=1,2,... (3)

where A and C are K-p.d. operators with domains D¢ O D, dense in H, and B is

K —symmetric operator with Dp 2 D¢. By definition of A, B and C (see,e.g.[4,5]) there
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exists a closable operator K with Dxg O D¢ mapping D4 onto a dense subset KD, of H.
and positive constants a;, as, B1, B2 such that

(Az, Kz) > oullz]|* , [|Kz||® < az(Az, K2) , (2 € Da) (4)
(Cz,Kz) > Bullz|* , ||Kz||> < B:(Cz,Kz), (z € Dc) (5)
(Bz,Ky) = (Kz.By) . (2,y € Ds) (6)

Let H4 be the completion of D4 in the metric (4)

(z,y)a = (Az.Ky). |lzll3 = (2.2)a, (2,9 € Da). (7)

and define H¢ to be the completion of D¢ in the metric (5).
(z.y)c = (Cz,Ky), |lzile = (z.2)c, (2.y € Do) (8)
Let H, = H x II*., Hc be the Cartesian product space of n + 1 Hilbert spaces. with

the norm and inner product defined by

(usv)n = ($$p) o Z(yi& q:')Ca U= (a:sylv--a yn)T and v = (P, qla---sqn)T € Hﬂ (9}

i=1

9

&

n 1/
fulln = (0} = (||z||?+ ¥ ||y,:|tz~) . (10)

and define the operator T : Dr C H, = H,, Dr = D4 x II% | D¢, as follows:

=1
AO0O0 .. 0 C Az
T — 0 I 0 0 y T " — hn g (11)
0 0 0 - I yn yn

Let Ds = DgxII™,D¢, S : Ds C Hy, — H,, Dy = DgxNI%,Dc, K : Dy C H, — H,
be the operator matrices

BCOO ..00
o010 .00

s=lo 101 . 00], (12)
0000 .. 10
K00 .. 0

}.{.=UIU 0‘ (13)
000 .1



3. THE EQUIVALENT LINEAR PROBLEM

Our original nonlinear eigenproblem (3) is equivalent to the system
Az — ABz — A\Cy, =0

Y1 — AT — Ay2 =0
Y2 — Ay1 — Ays =0 (14)
Yn — /\yn—l =0
which. in view of (11) and (12). is equivalent to the linear equation
Tu—ASu=20 (15)

in the sense that if z; is a solution of (3) corresponding to A = A;. then u; = (z;. v}, ....y")7T
is a solution of (15) and, conversely, if u; is a solution of (15) corresponding to A = A;,
then (z;.);) is a solution of (3). The following propositions are based on the corresponding
results obtained in [3,4], and can be proved similarly.

PROPOSITION 1. The operator T defined by (11) is K-p.d. in the space H, = HxII?_ He:
i.e., T satisfies the following conditions:

(a) D7 is dense in H,.

(b) Dz 2 Dr and K Dr is dense in H,,.

(c) K is closable in H,.

(d) There ezist positive constants 1, 2 such that

(Tw. Ku)n > mllull? . ||Kull2 < 72(Tu.Ku)n . (u€ Dr). (16)

Let us introduce in Dr a new inner product and norm

(w.0)y = (Tu, Ko) = (2,p)a + D (v @le - il = llallk + D lsllz. (17)

=1

where v = (z,y1, ..., yﬂ)T, v = (p,q, ...,qn)T.
From (16) we have the inequalities

lelly 2 vAillulla » [|Kulls < vallully , (v € Dr) (18)
Let us denote by Hy the completion of Dz in the metric (17).

PROPOSITION 2. The Hilbert space Hy has the properties

(a) Hig =y ¥ H?lec.

(b) Hy ts contained in H, in the sense of identifying uniquely the elements from Hy
with certain elements in H,.

(c) K can be ezxtended to a bounded operator Xg mapping all of Hy to H, such that
Kc I{'o 5 R’, where K denotef the closure off( Wiy

(d) T has a unique closed Ko-p.d. estension Ty such that To O T, Ty has a bounded

inverse Ty ' defined on all of H, = Rr,, and the inequalities (17) remain valid in Hy in
the form

llully > vAllulla , [1Koulla < vllully (v € Hy). (19)

In the sequel we shall assume, unless otherwise stated, that the operators Kand T

have already been extended and the notation T and Ko will not be used.
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PROPOSITION 3. The equivalent linear problem (15) Ta— A5G = 0 with T. S.and K
defined as in (11)-(13) has the property that T' is K-p.d. and S is K-symmetric on Dr.
Thus by definition [3], problem (15) is K -real.

Proof. In view of Proposition 1, only the K-symmetry of S needs to be verified. To this
end let w = (z,y1,...,yn)T and v = (p,q1, ..., g:)7 be elements in Dr C H, and by using
K-symmetry of the operators B and C on Dy C H, it follows that

(Su, Kv)n = (Ku.5v)n, (u,v € Dr) (20)

It is known [3.4] that K-real eigenvalue problems have the following properties. In partic-
ular, the eigenvalues of problem (15) are real, and the eigenfunctions u;, u, corresponding
to distinct eigenvalues A;, A, are orthogonal in the sense (T'L{.11K'l£2) = 0. Since H, is
separable, the point spectrum of problem (15), i.e. po(15) is countable. and from the
equivalence of problems (15) and (3)it follows that po(15) = po(3).

Let {u; : i =1.2....} be the set of eigenfunctions, 01tho11011nal in H,. of the K-rcal
eigenproblem (15) Tu—-)\S'u = 0 in H, ., which is equivalent to the problem (3) in H. Using
the methods developed in the theory of K-real eigenvalue problems, we may now derive
theorems 1 and 2, which extend to the problems (3) the corresponding results obtamned
in [3].

THEOREM 1. Suppose the operators K and Ly = a,(Az — ABz) — Aa,-1Cz defined in
(8) are closed, with Dxg = D¢ and Ly : Dy C H — H is a bijection for all A. ezcept
possibly for a discrete set of eigenvalues of the problem (8). Then the equivalent K -real
eigenproblem (15) Tu — ASw = 0 has the following properties:

(a) The eigenvalues and eigenfunctions satisfy the variational principle

L cplB AU o e 0, TEd 2 1= [(Sum, Kum)a] o)
| mi u€Dr [Tu,Ku),, (Tu- Kum]-n

Moreover, the eigenvalues determined by (21) exhaust entirely the set po(15).
(b) If w € D, then T~'Su has the expansion (convergent in the H,, and Hy norm):

T7'Su=Y (Su, Kws)au; (22)

i=1

4. EIGENVALUE APPROXIMATION METHOD

Let fo = (Zos Ui ,yo)T be an element in Dr such that fo ¢ N(S) (the null space of
S), and denote by fi = (zk, ¥y}, ..., y7)T the iterant at the kth step of our process. Then
the succeeding iterant fi4+1 is obtained by solving the equation T fiy1 = Sfi, 1.e.

A 0 0 0 .. 0 0 Tht1 B C 0 0 .. 0 0 T
0 I 00 ..00 Yt E B I B oeul Yr
0 07I0..00 Vigi 1=p @ T 0TI s 00 i | i(28)
0000 .. 01 Yier1 0 000 ..10 Yr

Now, let us determine the constants

b = (S fieir K fi)n = (Bzrei, Kz3) + (Cyp_;, Kz:) + (Coii, Kyj )+
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T

> l(Cui Kyd) + (Cul, Kyiz) @ S i<k, k=1,2,...). (24)

=2
Let Hj be the space spanned by the eigenfunction w;, (H %)+ be the orthogonal comple-
ment of Hy in Hy, and let wi = bag—1/bos+1-

THEOREM 2. Assume the hypothesis of Theorem I and suppose that |A.| < |A.41]| for
some positive integer r. If fo is chosen from the space

fo€ Dr 0 [NZHHY, fod (HY)L, r>1 (25)

then the following statements are true:

(a) the sequence {\/wy} converges monotonicly from above to |A.|,

(b)If l.+1 is a lower bound f or |A.41| such that for some integer M, Jwy < L4 <
| Ars1], then

Al > di = {(24; — wi)wigr/(I24; = wigr) P/
for k > M. Moreover, the sequence of lower bounds converges to |A,|.

5. NUMERICAL EXAMPLE
Consider the nonlinear eigenvalue problem
(1= M)(=" = Ap(t)z') = Mg(t)z' = 0 (26)

where p(t), g(t) are polynomials in t. Let us define the operators A, B and C in H =
L,(0,1) as follows:

Az =—2",Dy={2 € C"(0,1): 2(0) =2'(0) = 2"(1) = 0} (
Bz = p(t)z’, Dp = {z € C'(0,1) : z(0) = 0} (28)
Kz =z, Di=Az € C(0,1) :z(0) =0} (29)
It is easy to see that this eigenproblem, expressed in the form a;(Az —ABz)—A%a;Cz = 0,
is K-real and satisfies the conditions of Theorem 1.
First, we shall test our method on the problem (26) in the case p(t) = ¢(t) = 1, (when

the value of |A;| can be determined exactly) and compare our numerical approximation
with the exact value.

Applying our iterative method and proceeding fifty iterations, we get the decreasing
upper bounds for the eigenvalue |A;| (we show the first two and the last two iterations):

w; = 0.810169, wy = 0.794488, w9 = 0.79139675, wso = 0.79139672.

The exact value of |A;| is given by the solution of the equation —A% + A+ (1+7?)/4)% —
72/4 = 0 and is equal to 0.79139658388 (within an accuracy of 10~7).

Now, let us consider problem (26) with polynomials p(t) = 0.4 4 t%, ¢(t) =1 +¢. The
first fifty iterations give us the following approximations of the eigenvalue |\ | from above
(we show only the first and the last two iterations) :

wy = 0.776500,w, = 0.718666, wae = 0.715846033, wso = 0.715846030.

Although the exact solution of this problem is unknown, we can approximate the eigenval-
ue |A;| from below using Theorem 2. With I, as 0.8, we get the following approximations
converging to |A;| from below (we list the first two and the last two of fifty iterations):

d, = 0.393587,d, = 0.709282, dso = 0.7158460183, dso = 0.7158460187,
17
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We see that the approximations to |A;| from below and above bracket the eigenvalue
within an accuracy of 10”7 after fifty iterations.
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